Abstract

Relaxin (RLX) is a peptide hormone with known antifibrotic properties. However, its significance in the lung and its role as a therapeutic agent against diseases characterized by pulmonary fibrosis are yet to be established. In this study, we examined age-related structural and functional changes in the lung of relaxin-deficient mice. Lung tissues of male and female RLX knockout (-/-) and RLX wild-type (+/+) mice at various ages were analyzed for changes in collagen expression and content. We demonstrate an age-related progression of lung fibrosis in RLX -/- mice with significantly increased tissue wet weight, collagen content and concentration, alveolar congestion, and bronchiole epithelium thickening. The increased fibrosis was associated with significantly altered peak expiratory flow and lung recoil (lung function) in RLX -/- mice. Treatment of RLX -/- mice with relaxin in early and developed stages of fibrosis resulted in the reversal of collagen deposition. Organ bath studies showed that precontracted lung strips relaxed in the presence of relaxin. Together, these data indicate that relaxin may provide a means to regulate excessive collagen deposition in diseased states characterized by pulmonary fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.