Abstract

The utility of all parametric nonlinear optical processes is hampered by phase-matching requirements. Quasi-phase-matching, birefringent phase matching, and higher-order-mode phase matching have all been developed to address this constraint, but the methods demonstrated to date suffer from the inconvenience of only being phase matched for a single, specific arrangement of beams, typically copropagating, resulting in cumbersome experimental configurations and large footprints for integrated devices. Here, we experimentally demonstrate that these phase-matching requirements may be satisfied in a parametric nonlinear optical process for multiple, if not all, configurations of input and output beams when using low-index media. Our measurement constitutes the first experimental observation of direction-independent phase matching for a medium sufficiently long for phase matching to be relevant. We demonstrate four-wave mixing from spectrally distinct co- and counterpropagating pump and probe beams, the backward generation of a nonlinear signal, and excitation by an out-of-plane probe beam. These results explicitly show that the unique properties of low-index media relax traditional phase-matching constraints, which can be exploited to facilitate nonlinear interactions and miniaturize nonlinear devices, thus adding to the established exceptional properties of low-index materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call