Abstract
We associate with each convex optimization problem posed on some locally convex space with an infinite index set T, and a given non-empty family H formed by finite subsets of T, a suitable Lagrangian-Haar dual problem. We provide reverse H-strong duality theorems, H-Farkas type lemmas and optimality theorems. Special attention is addressed to infinite and semi-infinite linear optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.