Abstract

RNase E is an essential enzyme in Escherichia coli. The cleavage site of this single-stranded specific endoribonuclease is well-characterized in many RNA substrates. Here, we report that the upregulation of RNase E cleavage activity by a mutation that affects either RNA binding (Q36R) or enzyme multimerization (E429G) was accompanied by relaxed cleavage specificity. Both mutations led to enhanced RNase E cleavage in RNA I, an antisense RNA of ColE1-type plasmid replication, at a major site and other cryptic sites. Expression of a truncated RNA I with a major RNase E cleavage site deletion at the 5'-end (RNA I-5) resulted in an approximately twofold increase in the steady-state levels of RNA I-5 and the copy number of ColE1-type plasmid in E. coli cells expressing wild-type or variant RNase E compared to those expressing RNA I. These results indicate that RNA I-5 does not efficiently function as an antisense RNA despite having a triphosphate group at the 5'-end, which protects the RNA from ribonuclease attack. Our study suggests that increased cleavage rates of RNase E lead to relaxed cleavage specificity on RNA I and the inability of the cleavage product of RNA I as an antisense regulator in vivo does not stem from its instability by having 5'-monophosphorylated end.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.