Abstract

We propose a novel structured analysis-synthesis dictionary pair learning method for efficient representation and image classification, referred to as relaxed block-diagonal dictionary pair learning with a locality constraint (RBD-DPL). RBD-DPL aims to learn relaxed block-diagonal representations of the input data to enhance the discriminability of both analysis and synthesis dictionaries by dynamically optimizing the block-diagonal components of representation, while the off-block-diagonal counterparts are set to zero. In this way, the learned synthesis subdictionary is allowed to be more flexible in reconstructing the samples from the same class, and the analysis dictionary effectively transforms the original samples into a relaxed coefficient subspace, which is closely associated with the label information. Besides, we incorporate a locality-constraint term as a complement of the relaxation learning to enhance the locality of the analytical encoding so that the learned representation exhibits high intraclass similarity. A linear classifier is trained in the learned relaxed representation space for consistent classification. RBD-DPL is computationally efficient because it avoids both the use of class-specific complementary data matrices to learn discriminative analysis dictionary, as well as the time-consuming l1/l0 -norm sparse reconstruction process. The experimental results demonstrate that our RBD-DPL achieves at least comparable or better recognition performance than the state-of-the-art algorithms. Moreover, both the training and testing time are significantly reduced, which verifies the efficiency of our method. The MATLAB code of the proposed RBD-DPL is available at https://github.com/chenzhe207/RBD-DPL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call