Abstract

Due to the mildness of initial injury, many athletes with recurrent mild traumatic brain injury (mTBI) are misdiagnosed with other neuropsychiatric illnesses. This study was designed as a proof-of-principle feasibility trial for athletic trainers at a sports facility to generate electroencephalograms (EEGs) from student athletes for discriminating (mTBI) associated EEGs from uninjured ones. A total of 47 EEGs were generated, with 30 athletes recruited at baseline (BL) pre-season, after a concussive injury (IN), and post-season (PS). Outcomes included: 1) visual analyses of EEGs by a neurologist; 2) support vector machine (SVM) classification for inferences about whether particular groups belonged to the three subgroups of BL, IN, or PS; and 3) analyses of EEG synchronies including phase locking value (PLV) computed between pairs of distinct electrodes. All EEGs were visually interpreted as normal. SVM classification showed that BL and IN could be discriminated with 81% accuracy using features of EEG synchronies combined. Frontal inter-hemispheric phase synchronization measured by PLV was significantly lower in the IN group. It is feasible for athletic trainers to record high quality EEGs from student athletes. Also, spatially localized metrics of EEG synchrony can discriminate mTBI associated EEGs from control EEGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.