Abstract

This work deals with non-isentropic hydrodynamic models for semiconductors with short momentum and energy relaxation-times. The high- and low-frequency decomposition methods are used to construct uniform (global) classical solutions to Cauchy problems of a scaled hydrodynamic model in the framework of critical Besov spaces. Furthermore, it is rigorously justified that the classical solutions strongly converge to that of a drift-diffusion model, as two relaxation times both tend to zero. As a by-product, global existence of weak solutions to the drift-diffusion model is also obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.