Abstract

AbstractThe complex dielectric permittivity of thermosets of diglycidly ether of bisphenol‐A cured with ethylene diamine has been studied during their isothermal curing at several temperatures. As cross‐linking progresses, the dc conductivity decreases. At the beginning of the cure the dc conductivity can be fitted to both the scaling laws with a critical exponent of about 4 and an equation indicating approach toward a singularity. In the later stage of the cure, the change in permittivity corresponds to dipolar relaxation of an infinitely connected network, and the Argand diagram for the complex permittivity measured at a fixed frequency obtained as the curing process proceeds at 305 K is similar to that for the complex permittivity as frequency is varied for a time‐invariant system which obeys a stretched exponential relaxation function with the curing parameter or exponent, γ = 0.29. Increase in the temperature of isothermal curing lowers both γ and the net decrease in the equilibrium permittivity on curing. A plot of the calculated relaxation time with curing time is sigmoidal and shifts to shorter times on increasing the curing temperature. Measurement of the dielectric properties during the cure but for different frequencies show that the various parameters for the curing kinetics are independent of the frequency of measurement. These observations confirm the development of our concepts of thermoset curing in terms of a phenomenon of negative feedback between molecular diffusion and chemical reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call