Abstract

We compute the relaxation time for quark/antiquark spin and thermal vorticity alignment in a quark-gluon plasma at finite temperature and quark chemical potential. We model the interaction of quark/antiquark spin with thermal vorticity as driven by a phenomenological modification of the elementary quark interaction with gluons. We find that in a scenario where the angular velocity of the quark-gluon plasma produced in a peripheral heavy-ion collision is small, quarks/antiquarks take a long time to align their spin with the vorticity. However, when the angular velocity created in the reaction is large, the alignment is efficient and well within the lifetime of the system created in the reaction. The relaxation time is larger for antiquarks which points out to a difference for the polarization of hadrons and antihadrons when this alignment is preserved during hadronization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.