Abstract

We linearize the Uehling-Uhlenbeck equation for bosonic gases close to thermal equilibrium under the assumption of a contact interaction characterized by a scattering length a. We show that the spectrum of relaxation rates is similar to that of a classical hard-sphere gas. However, the relaxation rates show a significant dependence on the fugacity z of the gas, increasing by as much as 60% of their classical value for z approaching 1. The relaxation modes are also significantly altered at higher values of z. The relaxation rates and modes are determined by the eigenvalues and eigenvectors of a Fredholm integral operator of the second kind. We derive an analytical form for the kernel of this operator and present numerical results for the first few eigenvalues and eigenvectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call