Abstract

ABSTRACTA molecular dynamics simulation (MD) of lithium metasilicate (Li2SiO3) and related mixed alkali system (LiKSiO3) has been performed. Changes in the mean squared displacement and the corresponding clear two-step (β and α1) relaxations in a density correlation function have been observed at 700 K (self-part) for each ion in Li2SiO3 following an exponential decay by vibrational motion in a simulation up to 300 ps (run I). The mean squared displacement of the atoms shows the change in the slope at ca. 300 ps when the simulation is extended up to 1 ns (run II). Here we call the slowest relaxation (ca. 300 ps∼) the α2 region.Oscillation, which is clearer for O and Si than for Li, is found in the second (β-relaxation) region of the function, which is attributed to the so called “boson peak”. Both the β-relaxation and the boson peak are found to be due to the correlated motion.The slower relaxation (α1-relaxation) can be fitted to a stretched exponential form and the origin of this type of decay is confirmed to be waiting time distribution of jump motions. The back-correlated jumps also decrease the decay rate.Components A and B in α1 and α2 regions for Li ion are analyzed, where the Li ion of component A is located within the first neighboring sites and that of component B moves longer than the nearest neighbor distances by cooperative jump motion. The component B shows accelerated dynamics larger than t-linear ones (∼ t1.77) in the region 50–300 ps, and the dynamics can be characterized as Lévy flight.We have found that the contribution of the cooperative jumps decreases in the mixed alkali glass. This explains the maximum of the Haven ratio accompanied with the mixed alkali effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.