Abstract

Relaxation processes and structural transitions in nonstretched and uniaxially stretched films of poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) and its homopolymer polyvinylidene fluoride (PVDF) for comparison were investigated with the aim of understanding the electromechanical properties of this lower-modulus ferroelectric copolymer. The mechanical and the dielectric response at the glass transition (αa relaxation) exhibit similar temperature dependence of the relaxation time, whereas mechanical and dielectric processes above the glass transition are not related. They represent a continuous softening process within the amorphous phase and the dielectric αc relaxation, respectively. The latter is attributed to conformational changes of VDF segments in lamellae of spherulites constituting the nonpolar crystalline α phase. Furthermore, there is a contribution from melting of secondary crystallites formed in the amorphous phase during annealing or storage. Mechanically, this transition appears in nonstretched and stretched films as an accelerated decrease of the elastic modulus that terminates the rubber plateau. Dielectrically, this transition becomes visible as a frequency-independent loss peak only in stretched films, because stretching removes the αc relaxation, which superimposes the transition in nonstretched films. Melting of secondary crystallites is shown to appear in the homopolymer, too, though less pronounced because of more complete primary crystallisation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.