Abstract

Monoglycerides are the most commonly used surfactants in the food industry in traditional food, low-fat products and instant foods. In this work we are essentially concerned with the study of the stability in monoglyceride monolayers (monopalmitin, monoolein and monolaurin) as a function of surface pressure (10 and 20 mN.m −1) and aqueous phase pH (pH 5 and 7). Monolayer stability was determined in an automated Langmuir-type film balance at constant temperature (20 and 40°C). The rate of monolayer molecular loss increases with surface pressure, and is pH dependent. Molecular loss at the interface also depends on the lipid. In the discussion, special attention will be given to the effect of the hydrocarbon chain length and the presence of a double bond in the hydrocarbon chain. Monopalmitin monolayers are more stable than those of monoolein and monolaurin. Maximum instability was observed with monolaurin monolayers. Two kinds of experiment have been performed to analyse relaxation mechanisms. In one, the surface pressure is kept constant, and the area is measured as a function of time. In the second, the area is kept constant at monolayer collapse and the surface pressure decreases. This decrease is measured as a function of time. Various relaxation mechanisms, including monolayer molecular loss by dissolution and/or collapse, can be fitted to the results derived from these experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call