Abstract
Polarized116In nuclei have been produced by capture of polarized thermal neutrons in several In compounds. At temperaturesT below 77 °K and magnetic field strengthsH 0 of several kOe, asymmetries of a few percent of the β− decay of the116In ground state could be observed in polycrystalline InP, InAs and InSb, thus indicating the nuclear polarization. Nuclear magnetic resonance signals have been measured with the result for the magnetic moment μ i (116In)=2.7723 (10) nm (uncorrected). β− decay asymmetry and spin lattice relaxation timeT 1 have been studied as a function ofH 0 andT. The effect ofH 0 is to decouple the hyperfine interaction caused by the capture-γ recoil process. However,H 0 has no influence uponT 1, which demonstrates the absence of nuclear relaxation due to paramagnetic impurities.T 1 is determined by quadrupolar relaxation. A quadrupole momentQ(116In)=0.09 (2) b was calculated by comparison of the116In relaxation rates with those of the stable115In isotope in the same compounds. Above 30 °K the temperature dependence of 1/T 1 agrees with a recent theoretical investigation. Below 30 °K the relaxation rate shows an anomalous behaviour, which can be explained by resonance modes due to recoil lattice defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.