Abstract

We study a class of delay differential equations which have been used to model hematological stem cell regulation and dynamics. Under certain circumstances the model exhibits self-sustained oscillations, with periods which can be significantly longer than the basic cell cycle time. We show that the long periods in the oscillations occur when the cell generation rate is small, and we provide an asymptotic analysis of the model in this case. This analysis bears a close resemblance to the analysis of relaxation oscillators (such as the Van der Pol oscillator), except that in our case the slow manifold is infinite dimensional. Despite this, a fairly complete analysis of the problem is possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.