Abstract
Results of numerical simulations of a Duffing type Hamiltonian system with a slow periodically varying parameter are presented. Using theory of adiabatic invariants, reversibility of the system and theory of symplectic maps, along with thorough numerical experiments, we present many details of the orbit behavior for the system. In particular, we found many symmetric mixed mode periodic orbits, both being hyperbolic and elliptic, the regions with a perpetual adiabatic invariant and chaotic regions. For the latter region we present details of chaotic behavior: calculation of homoclinic tangles and Lyapunov exponents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The interdisciplinary journal of Discontinuity, Nonlinearity, and Complexity
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.