Abstract

We report the first direct observation of the decay of the excited-state population in electrons trapped on the surface of liquid helium. The relaxation dynamics, which are governed by inelastic scattering processes in the system, are probed by the real-time response of the electrons to a pulsed microwave excitation. Comparison with theoretical calculations allows us to establish the dominant mechanisms of inelastic scattering for different temperatures. The longest measured relaxation time is around 1 μs at the lowest temperature of 135mK, which is determined by the inelastic scattering due to the spontaneous two-ripplon emission process. Furthermore, the image-charge response shortly after applying microwave radiation reveals interesting population dynamics due to the multisubband structure of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.