Abstract

The axial strain induced stresses in double-coated optical fibers are analyzed by the viscoelastic theory. A closed form solution of the axial strain induced viscoelastic stresses is obtained. The viscoelastic stresses are a function of the radii, Young's moduli, relaxation times and Poisson's ratios of the polymeric coatings. If the applied axial strain linearly increases, the induced stresses increase with the time. On the other hand, if the axial strain is fixed, besides the axial stress in the glass fiber, the stresses exponentially decrease with the time. The relaxation of stresses is strongly dependent on the relaxation times of the polymeric coatings. If the relaxation time of the polymeric coating is very long, the viscous behavior of the polymeric coatings will not appear, and the axial strain induced stresses solved by the viscoelastic theory are the same as those solved by the elastic theory. On the other hand, if the relaxation time of the polymeric coating is very short, the relaxation of stresses is very apparent. A compressive radial stress at the interface of the glass fiber and primary coating will result in an increase of the transmission losses, and a tensile interfacial radial stress will possibly produce debonding at the interface of the glass fiber and primary coating. To minimize this interfacial radial stress, the radius, Young's modulus and Poisson's ratio of the polymeric coatings should be appropriately selected, and the relaxation time of the primary coating should be shortened. Finally, the stresses in single-coated and double-coated optical fibers are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.