Abstract

We study the out-of-equilibrium relaxation of surface steps after thermal quenches using numerical simulations of the terrace-step-kink model for a vicinal surface. We analyze both single and interacting steps in a situation where the temperature is suddenly changed at a given quench time. We focus on a physically relevant range of temperatures and show that the relaxation of the roughness is compatible with a power-law behavior with an effective relaxation exponent close to γ = 1/2 in all cases. This value is consistent with a one-dimensional Edwards-Wilkinson equation. In particular, this means that, although the case of interacting steps is effectively a two-dimensional system, its relaxation is dominated by short length-scale fluctuations, where steps are not interacting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.