Abstract

Alloying-type metallic tin is perceived as a potential anode material for K-ion batteries owing to its high theoretical capacity and reasonable working potential. However, pure Sn still face intractable issues of inferior K+ storage capability owing to the mechanical degradation of electrode against large volume changes and formation of intermediary insulating phases K4 Sn9 and KSn during alloying reaction. Herein, the TiC/C-carbon nanotubes (CNTs) is prepared as an effective buffer matrix and composited with Sn particles (Sn-TiC/C-CNTs) through the high-energy ball-milling method. Owing to the conductive and rigid properties, the TiC/C-CNTs matrix enhances the electrical conductivity as well as mechanical integrity of Sn in the composite material and thus ultimately contributes to performance supremacy in terms of electrochemical K+ storage properties. During potassiation process, the TiC/C-CNTs matrix not only dissipates the internal stress toward random radial orientations within the Sn particle but also provides electrical pathways for the intermediate insulating phases; this tends to reduce microcracking and prevent considerable electrode degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call