Abstract

Formation of Si 1− x Ge x -alloy layers by solid phase epitaxial growth (SPEG) of Ge + ion implanted silicon has been studied. The ion implantations were performed with 40, 100, 150, 200 and 300 keV 74Ge + ions and various ion doses. The SPEG of the ion implanted layers was carried out in a conventional furnace at 850°C for 20 min under a flow of nitrogen gas. The Si 1− x Ge x -alloy layers were characterised by Rutherford backscattering spectrometry and transmission electron microscopy (TEM). For a given ion energy, a Si 1− x Ge x -alloy layer with no observable extended defects can be manufactured if the ion dose is below a critical value and strain-induced defects are formed in the alloy layer when the ion dose is equal to or above this value. The critical Ge + ion dose increases with ion energy, while the critical maximum Ge concentration decreases. For ion energies ⩽150 keV, the defects observed in the alloy layers are mostly stacking faults parallel to the {1 1 1} planes. For higher ion energies, 200 keV and above, the majority of defects in the alloy layer are hairpin dislocations. In the whole ion energy range, the critical ion dose and the depth position of the nucleation site for the stacking faults obtained from the measurements are in good agreement with theoretical predictions. Extended defects are formed in the alloy layer during the SPEG when the regrowth of the crystalline/amorphous interface has reached the depth position in the crystal where the accumulated strain energy density is equal to the critical value of 235 mJ/m 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call