Abstract

Shot peening is a commonly used surface treatment process that imparts compressive residual stresses into the surface of metal components. Compressive residual stresses retard initiation and growth of fatigue cracks. During the component loading history, the shot-peened residual stresses may change due to thermal exposure, creep, and cyclic loading. This paper describes a methodical approach for characterizing and modeling residual stress relaxation under elevated temperature loading, near and above the monotonic yield strength of nickel-base superalloy IN100. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain. The initial room temperature residual stress and plastic strain profiles provide the initial conditions for relaxation predictions using the coupled creep-plasticity model. Model predictions correlate well with experimental results on shot-peened dogbone specimens subject to single cycle and creep loading conditions at elevated temperature. The predictions accurately capture both the shape and magnitude of the retained residual stress profile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.