Abstract
We investigate a kinetic model for H-H2 mixtures in a regime where translational/rotational and vibrational-resonant energy exchanges are fast whereas vibrational energy variations are slow. In a relaxation regime, the effective volume viscosity is found to involve contributions from the rotational volume viscosity, the vibrational volume viscosity, the relaxation pressure, and the perturbed source term. In the thermodynamic equilibrium limit, the sum of these four terms converges toward the one-temperature two-mode volume viscosity. The theoretical results are applied to the calculation of the volume viscosities of molecular hydrogen in the trace limit on the basis of a complete set of state-selected cross sections for the H + H2(v, j) system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.