Abstract

The relaxation of relativistic hot electron–positron plasma is investigated by incorporating the effect of non-zero photon mass, and a quadruple Beltrami (QB) relaxed state for the magnetic vector potential is derived. The QB state is a linear superposition of four single force-free fields and is characterized by four self-organized structures of different length scales. The analysis of QB states shows that for certain values of generalized helicities at lower relativistic temperatures, plasma shows diamagnetic behaviour. It is also noteworthy that the inclusion of non-zero photon mass naturally provides the possibility of multiscale structure formation in the relaxed state. In this scenario, one of the field structures is significantly larger than the Compton wavelength of photons, while the other three structures are on the scale of the electron skin depth. The potential implications of this QB state for astrophysical environments are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.