Abstract

Two-dimensional Fokker–Planck type kinetic equations were derived, and some calculation results are presented to illustrate the principal distinction of the process of translational relaxation in a flow behind the front of a shock wave from the one-dimensional description that is valid for a stationary gas. In contrast to a Lorentz gas (a small admixture of light particles in a thermostat of heavy particles), the process of translational relaxation in a Rayleigh gas (a small admixture of heavy particles in a thermostat of low-weight gas particles) has an obvious two-dimensional character.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.