Abstract

Acetohydroxy acid synthetase, which is sensitive to catabolite repression in wild-type Escherichia coli B, was relatively resistant to this control in a streptomycin-dependent mutant. The streptomycin-dependent mutant was found to be inducible for beta-galactosidase in the presence of glucose, although repression of beta-galactosidase by glucose occurred under experimental conditions where growth of the streptomycin-dependent mutant was limited. Additional glucose-sensitive enzymes of wild-type E. coli B (citrate synthase, fumarase, aconitase and isocitrate dehydrogenase) were found to be insensitive to the carbon source in streptomycin-dependent mutants: these enzymes were formed by streptomycin-dependent E. coli B in equivalent quantities when either glucose or glycerol was the carbon source. Two enzymes, glucokinase and glucose 6-phosphate dehydrogenase, that are glucose-insensitive in wild-type E. coli B were formed in equivalent quantity on glucose or glycerol in both streptomycin-sensitive and streptomycin-dependent E. coli B. The results indicate a general decrease or relaxation of catabolite repression in the streptomycin-dependent mutant. The yield of streptomycin-dependent cells from glucose was one-third less than that of the streptomycin-sensitive strain. We conclude that the decreased efficiency of glucose utilization in streptomycin-dependent E. coli B is responsible for the relaxation of catabolite repression in this mutant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.