Abstract
The possibility of studying the size distribution of particles suspended in a liquid irradiated with short pulses of strong electric fields, which almost do not change the properties of the disperse system is considered. The particle size is varied from 10 to 1000 nm. Relaxation dependences of the optically anisotropy induced by such pulses are investigated. The relaxation curves of the induced electrooptical effect are shown to behave similarly to the relaxation curves of the effect in the system with completely oriented particles. For aqueous polydisperse systems of diamond, graphite, and palygorskit, whose particles significantly differ in shape and physicochemical properties, the relaxation dependences of the electrooptical effect induced by fields of different duration and amplitude are measured. The correlation coefficients between the relaxation dependences are calculated. If the field is sufficiently strong, the correlation coefficients remain close to unity for all the three systems studied irrespective of the duration of the field pulse. This indicates that these curves are similar and that short powerful pulses can be used for determining the size distribution of particles in nanodisperse systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.