Abstract

We study the relaxation of a test particle immersed in a bath of field particles interacting via weak long-range forces. To order 1/N in the $N\to +\infty$ limit, the velocity distribution of the test particle satisfies a Fokker-Planck equation whose form is related to the Landau and Lenard-Balescu equations in plasma physics. We provide explict expressions for the diffusion coefficient and friction force in the case where the velocity distribution of the field particles is isotropic. We consider (i) various dimensions of space $d=3,2$ and 1 (ii) a discret spectrum of masses among the particles (iii) different distributions of the bath including the Maxwell distribution of statistical equilibrium (thermal bath) and the step function (water bag). Specific applications are given for self-gravitating systems in three dimensions, Coulombian systems in two dimensions and for the HMF model in one dimension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.