Abstract

Self-consistent Hartree-Fock and generalized valence bond calculations have been performed on clusters modeling the (111) silicon surface. We find that the surface state is accurately described as a dangling bond surface orbital with 93% p character. We determined the optimum relaxation of the surface layer to be 0.08 Å toward the second layer. In the positive ion, the surface atom relaxes toward the second layer by an additional 0.30 Å and for the negative ion the surface atom moves toward the vacuum 0.25 Å. The vertical ionization potential was found to be 5.78 eV (experimental values are 5.6 – 5.9 eV) while the calculated adiabatic electron affinity is 3.02 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.