Abstract

SummaryThe convergence analysis for methods solving partial differential equations constrained optimal control problems containing both discrete and continuous control decisions based on relaxation and rounding strategies is extended to the class of first order semilinear hyperbolic systems in one space dimension. The results are obtained by novel a priori estimates for the size of the relaxation gap based on the characteristic flow, fixed‐point arguments, and particular regularity theory for such mixed‐integer control problems. Motivated by traffic flow problems, a relaxation model for optimal flux switching control in conservation laws is considered as an application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call