Abstract

Line shape parameters including the half-widths and the off-diagonal elements of the relaxation matrix have been calculated for self-broadened NH3 lines in the perpendicular Îœ4 band. As in the pure rotational and the parallel Îœ1 bands, the small inversion splitting in this band causes a complete failure of the isolated line approximation. As a result, one has to use formalisms not relying on this approximation. However, due to differences between parallel and perpendicular bands of NH3, the applicability of the formalism used in our previous studies of the Îœ1 band and other parallel bands must be carefully verified. We have found that, as long as potential models only contain components with K1 = K2 = 0, whose matrix elements require the selection rule Δk = 0, the formalism is applicable for the Îœ4 band with some minor adjustments. Based on both theoretical considerations and results from numerical calculations, the non-diagonality of the relaxation matrices in all the PP, RP, PQ, RQ, PR, and RR branches is discussed. Theoretically calculated self-broadened half-widths are compared with measurements and the values listed in HITRAN 2012. With respect to line coupling effects, we have compared our calculated intra-doublet off-diagonal elements of the relaxation matrix with reliable measurements carried out in the PP branch where the spectral environment is favorable. The agreement is rather good since our results do well reproduce the observed k and j dependences of these elements, thus validating our formalism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call