Abstract

NMR structure determination is usually based on distance restraints extracted semiquantitatively from cross peak volumes or intensities in NOESY spectra. The recent introduction of exact NOEs (eNOE) by Vogeli et al. opens an avenue for the ensemble-based structure determination of proteins on the basis of eNOE-derived quantitative distance restraints. We present an approach to extract eNOE from build-up curve intensities. For the determination of eNOEs, spin diffusion is a major source of errors. A full relaxation matrix analysis is used to calculate the spin diffusion contribution to the NOESY cross peaks of each individual spin pair of interest. A software program is written, which requires as input the peak intensities from the various NOESY spectra as well as a 3D structure of the protein. This structure can be either an X-ray structure or an NMR structure determined with the conventional approach. The outputs of the program are the eNOE rates, the autorelaxation rates, as well as graphs and quality factors from the individual NOE build-up curves for semiautomated analysis of the derived rates. The protocol is straightforward, and the program integrates well into the current structure calculation workflow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.