Abstract

We study a relaxation limit of a solution to the initial–boundary value problem for a hydrodynamic model to a drift-diffusion model over a one-dimensional bounded domain. It is shown that the solution for the hydrodynamic model converges to that for the drift-diffusion model globally in time as a physical parameter, called a relaxation time, tends to zero. It is also shown that the solutions to the both models converge to the corresponding stationary solutions as time tends to infinity, respectively. Here, the initial data of electron density for the hydrodynamic model can be taken arbitrarily large in the suitable Sobolev space provided that the relaxation time is sufficiently small because the drift-diffusion model is a coupled system of a uniformly parabolic equation and the Poisson equation. Since the initial data for the hydrodynamic model is not necessarily in “momentum equilibrium”, an initial layer should occur. However, it is shown that the layer decays exponentially fast as a time variable tends to infinity and/or the relaxation time tends to zero. These results are proven by the decay estimates of solutions, which are derived through energy methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.