Abstract

The use of Fluorescence Correlation Spectroscopy (FCS) in combination with Förster Resonance Energy Transfer (FRET) is gaining popularity as a tool to investigate kinetics in equilibrium conditions. The technique is based on the study of fluorescence fluctuations in small numbers of molecules, and is particularly well-suited to investigate conformational dynamics in biopolymers. In practice, its applicability is often hindered by the presence of certain impurities such as partially labeled biomolecules, excess of free fluorophore, or partially dissociated multi-subunit complexes. Here, we show that the simultaneous measurement of the fluctuations in the donor and acceptor intensities allows the determination of the kinetic relaxation time of the reaction in the presence of donor-only particles when cross-talk is negligible, or in cases where all species have the same diffusion coefficient. Theoretical predictions are supported with the results of Monte Carlo simulations, and demonstrate that the applicability of the technique is more general than previously thought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.