Abstract
Changes in intrafollicular pressure and follicular diameter resulting from injecting or withdrawing fluid from the antrum were measured in preovulatory follicles and used as an assay for changes in tension in the follicular wall by applying the Laplace relationship for thin-walled spheres. Passive length-tension curves were constructed from pressure-volume measurements to establish baseline wall stiffness. Any subsequent change in pressure could then be compared to the length-tension curves to evaluate whether it arose from active tension development or from passive stretch. When intact follicles (1-2h before ovulation) were subjected to release of passive stretch, they exhibited a contractile response that lasted 15 sec-2 min and was characterized by cyclic increases and decreases in tension, with a period of 1 cycle every 2-3 sec. The probability of activating a response in the tissue was most strongly correlated with the rate of release of passive stretch. Intrafollicular pressures generated during active contractile responses sometimes reached 80 mmHg (10.64 mPa), corresponding to a wall tension of 5332 dynes/cm (5.332 N/m) (for a 1 mm follicle) and were clearly well above the passive length-tension curves. Passive stretching of the follicular wall during a contractile response to 5-hydroxytryptamine stimulation resulted in large reductions in active wall tension for the duration of the stretch. These results are consistent with a stretch-activated inhibition of contractile events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.