Abstract
In ferret ventricular myocytes the rate of intracellular Ca concentration [Ca]i decline and relaxation is remarkably fast (compared with rabbit and rat) under conditions where both the sarcoplasmic reticulum Ca uptake and Na/Ca exchange are inhibited. Here we explore the possibility that this rapid [Ca]i decline in ferret cells is attributable to the sarcolemmal Ca ATPase by using carboxyeosin (a potent inhibitor of the sarcolemmal Ca-ATPase). We compare the effects of carboxyeosin with those of elevated extracellular [Ca] ([Ca]o) (a thermodynamic approach to limit Ca transport by the sarcolemmal Ca ATPase). In rabbit cells, carboxyeosin and high [Ca]o slowed [Ca]i decline similarly and both virtually abolished [Ca]i decline when mitochondrial Ca uptake was also inhibited. In ferret cells, carboxyeosin treatment produced these same effects on [Ca]i decline, but high [Ca]o did not mimic them. Moreover, only in carboxyeosin-treated ferret cells did additional inhibition of mitochondrial Ca uptake nearly abolish [Ca]i decline. We conclude that, carboxyeosin loading can inhibit the sarcolemmal Ca-ATPase in intact myocytes; that this pump seems likely to be responsible for the much faster relaxation observed in ferret cells after block of SR Ca accumulation and Na/Ca exchange transport and that the sarcolemmal Ca pump apparently has different characteristics in rabbit and ferret ventricular myocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.