Abstract

To investigate whether the same mechanisms underlie muscle relaxation in proximal and distal arm muscles of normal subjects. Fourteen healthy subjects were studied using a simple visual reaction time paradigm. Relaxation reaction time (R-RT) and contraction reaction time (C-RT) were compared across different tasks involving distal (first dorsal interosseus, FDI, flexor carpi radialis, FCR) and proximal (biceps brachii, BB, triceps brachii, TR) arm muscles. Changes of FCR H-reflex before and during voluntary relaxation were investigated in two subjects. No significant difference was observed between R-RT and C-RT in the distal muscles. The R-RT was significantly shorter than C-RT in both the BB and TR muscles. The relaxation latency (R-RT) was significantly correlated to the subjects' age in all the muscles except the FDI. No inhibition of the FCR H-reflex could be observed in the 20 ms preceding muscle relaxation. Our findings suggest that neural mechanisms contribute differently to the relaxation of muscles with a different functional role. Voluntary relaxation in distal arm muscles is mainly related to the reduction of motor cortical output, while in proximal muscles a spinal disfacilitation is also present and possibly sustained by the modulation of presynaptic inhibition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call