Abstract

We report on an ultrafast experimental and simulations study of the early relaxation events of photoexcited tryptophan in water. Experimentally, we used fluorescence up-conversion in both polychromatic and single wavelength detection modes in the 300-480 nm range with polarization dependence. We report on the time evolution of the Stokes shift, bandwidth, and anisotropy from tens of femtoseconds to picoseconds. These observables contain signatures of the simultaneous occurrence of intramolecular and solvent-molecule interactions, which we disentangle with the help of nonequilibrium molecular dynamics simulations. We also observe a breakdown of the linear response approximation to describe our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.