Abstract

The electronic relaxation dynamics of photoexcited Au20(SC8H9)15-n-glyme and Au20(SC8H9)15-n-glyme-Au20(SC8H9)15 (n- = di-, tri-, and tetra-) dimers, where glyme refers to n-ethylene glycol dimethyl ether bridging molecules, were studied using pump–probe femtosecond time-resolved transient absorption spectroscopy (fsTAS). The utilization of n-glyme molecular bridging linkers provided a method to prepare Au20(SC8H9)15-n-glyme-Au20(SC8H9)15 dimers with control over intercluster spatial separation. A dimer-specific electronic absorption resonance was observed at 2.6 eV. Analysis of fsTAS differential spectra for dimer species revealed a pump–probe waiting time-dependent blue shift of the low energy excited-state absorption (ESA) feature, suggesting electronic relaxation into a dimer-specific excited-state. Single probe-energy differential signal amplitude analysis of the ESA feature yielded a distance-dependent growth component for the electronic relaxation dynamics with time constants of 130 ± 20, 60 ± 8, a...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call