Abstract
Atomistic molecular dynamics simulations are employed to investigate the global and segmental relaxation dynamics of the amyloid-β protein and its causative and protective mutants. Amyloid-β exhibits significant global/local dynamics that span a broad range of length and time scales due to its intrinsically disordered nature. The relaxation dynamics of the amyloid-β protein and its mutants is quantitatively correlated with its experimentally measured aggregation propensity. The protective mutant has slower relaxation dynamics, whereas the causative mutants exhibit faster global dynamics compared with that of the wild-type amyloid-β. The local dynamics of the amyloid-β protein or its mutants is governed by a complex interplay of the charge, hydrophobicity, and change in the molecular mass of the mutated residue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.