Abstract

We have investigated the solvation dynamics and the genuine binding energy and photoemission anisotropy of the solvated electron in neutral water clusters with a combination of time-resolved photoelectron velocity map imaging and electron scattering simulations. The dynamics was probed with a UV probe pulse following above-band-gap excitation by an EUV pump pulse. The solvation dynamics is completed within about 2 ps. Only a single band is observed in the spectra, with no indication for isomers with distinct binding energies. Data analysis with an electron scattering model reveals a genuine binding energy in the range of 3.55–3.85 eV and a genuine anisotropy parameter in the range of 0.51–0.66 for the ground-state hydrated electron. All of these observations coincide with those for liquid bulk, which is rather unexpected for an average cluster size of 300 molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.