Abstract
This study investigated the relaxation behaviors of octadecylamine (ODA), stearic acid (SA), and SA/ODA mixed monolayers at the air/water interface. Area relaxations of monolayers at constant surface pressure were studied by a nucleation and growth mechanism and by direct observation using a Brewster angle microscope (BAM). The results showed that ODA and SA monolayers exhibit different characteristics in the area loss and in the BAM morphology. In the initial relaxation stage, SA monolayer illustrates a more stable characteristic than ODA. But at the later stage, the area loss of SA monolayer increases more quickly than that for ODA due to significant nucleation and growth of 3D aggregates. The BAM results demonstrated that 3D aggregates of large scale domains are likely to form on a SA monolayer even when the area loss is insignificant. On the contrary, only dotlike aggregates of low density were found on the ODA monolayer when relaxation is carried out at higher surface pressure. The relaxation behavior of SA monolayer can be described by the Vollhardt model. However, the relaxation of ODA monolayer does not follow the nucleation model described by Vollhard but can reasonably be attributed to the effect of dissolution. For the SA/ODA mixed monolayers, the relaxation behaviors in the initial and final stages follow different mechanisms, which is attributed to the formation of distinct phases as observed from the BAM. This result also implied that SA and ODA are not completely miscible to be a homogeneous phase. Phases of various compositions were formed in the mixed monolayers, and thus, the relaxation mechanism was shifted during the relaxation process as dominated by different relaxation behaviors of various phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.