Abstract

The effect of clay reinforcement on dielectric, conductivity, and mechanical relaxation behavior of a polymer clay nanocomposite film is reported. Polymer nanocomposite is composed of three component polymers (polyacrylonitrile) as a host matrix, salt (LiPF6) as conducting species, and clay (sodium montmorillonite) as intercalant. The macroscopic parameters like polymer glass transition temperature and available free mobile charge carriers have been analyzed properly using dynamic mechanical analysis and dielectric analysis. Dielectric analysis indicated distribution of relaxation time as a function of clay concentration, whereas conductivity spectrum exhibited dispersion at lower frequency followed by saturation region at intermediate frequency. The dispersion behavior is related to the electrode polarization attributed to faster ion dynamics. The dielectric and conductivity relaxation are in excellent correlation with mechanical relaxation owing to the changes in glass transition temperature due to polymer-ion-clay interaction. The proposed mechanism is a sequel to the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.