Abstract

We analyze properties of the Sp(2M) conformally invariant field equations in the recently proposed generalized $\half M(M+1)$-dimensional space-time $\M_M$ with matrix coordinates. It is shown that classical solutions of these field equations define a causal structure in $\M_M$ and admit a well-defined decomposition into positive and negative frequency solutions that allows consistent quantization in a positive definite Hilbert space. The effect of constraints on the localizability of fields in the generalized space-time is analyzed. Usual d-dimensional Minkowski space-time is identified with the subspace of the matrix space $\M_M$ that allows true localization of the dynamical fields. Minkowski coordinates are argued to be associated with some Clifford algebra in the matrix space $\M_M$. The dynamics of a conformal scalar and spinor in $\M_2$ and $\M_4$ is shown to be equivalent, respectively, to the usual conformal field dynamics of a scalar and spinor in the 3d Minkowski space-time and the dynamics of massless fields of all spins in the 4d Minkowski space-time. An extension of the electro-magnetic duality transformations to all spins is identified with a particular generalized Lorentz transformation in $\M_4$. The M=8 case is shown to correspond to a 6d chiral higher spin theory. The cases of M=16 (d=10) and M=32 (d=11) are discussed briefly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.