Abstract

Fluid dynamics corresponds to the dynamics of a substance in the long wavelength limit. Writing down all terms in a gradient (long wavelength) expansion up to second order for a relativistic system at vanishing charge density, one obtains the most general (causal) equations of motion for a fluid in the presence of shear and bulk viscosity, as well as the structure of the non-equilibrium entropy current. Requiring positivity of the divergence of the non-equilibrium entropy current relates some of its coefficients to those entering the equations of motion. I comment on possible applications of these results for conformal and non-conformal fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.