Abstract

A self-consistent relativistic spin-polarized version of the total-energy full-potential linearized-augmented-plane-wave (FLAPW) method is developed on the basis of a second-variation treatment of the spin-orbit coupling (SOC). As illustration, the method is applied to determine the magnetoelastic coupling, orbital magnetic moment anisotropy and magnetic anisotropy energy (MAE) of a Co overlayer on Cu(001). The MAE (-0.36 meV) calculated at the equilibrium overlayer/substrate distance is in good agreement with experiment. As discovered earlier by Wu and Freeman, we find a linear dependence of the MAE on the overlayer/substrate distance. The calculated positive effective magnetoelastic coupling coefficient (1.13 meV) is caused by a positive surface magnetoelastic anisotropy (0.23 meV). This causes a negative magnetostriction coefficient ${\ensuremath{\lambda}}_{001}=\ensuremath{-}5.20\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$ and an isotropic magnetostriction coefficient ${\ensuremath{\lambda}}_{s}=\ensuremath{-}5.65\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$ that is in very good agreement with previous studies based on a perturbative SOC treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.