Abstract

Matrix elements of irreducible representations of the Lorentz group are calculated on the basis of complex angular momentum. It is shown that Laplace-Beltrami operators, defined in this basis, give rise to Fuchsian differential equations. An explicit form of the matrix elements of the Lorentz group has been found via the addition theorem for generalized spherical functions. Different expressions of the matrix elements are given in terms of hypergeometric functions both for finite-dimensional and unitary representations of the principal and supplementary series of the Lorentz group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.