Abstract

Periodic space crystals are well established and widely used in physical sciences. Time crystals have been increasingly explored more recently, where time is disconnected from space. Periodic relativistic spacetime crystals on the other hand need to account for the mixing of space and time in special relativity through Lorentz transformation, and have been listed only in 2D. This work shows that there exists a transformation between the conventional Minkowski spacetime (MS) and what is referred to here as renormalized blended spacetime (RBS); they are shown to be equivalent descriptions of relativistic physics in flat spacetime. There are two elements to this reformulation of MS, namely, blending and renormalization. When observers in two inertial frames adopt each other's clocks as their own, while retaining their original space coordinates, the observers become blended. This process reformulates the Lorentz boosts into Euclidean rotations while retaining the original spacetime hyperbola describing worldlines of constant spacetime length from the origin. By renormalizing the blended coordinates with an appropriate factor that is a function of the relative velocities between the various frames, the hyperbola is transformed into a Euclidean circle. With these two steps, one obtains the RBS coordinates complete with new light lines, but now with a Euclidean construction. One can now enumerate the RBS point and space groups in various dimensions with their mapping to the well known space crystal groups. The RBS point group for flat isotropic RBS spacetime is identified to be that of cylinders in various dimensions: mm2 which is that of a rectangle in 2D, (∞/m)m which is that of a cylinder in 3D, and that of a hypercylinder in 4D. An antisymmetry operation is introduced that can swap between space-like and time-like directions, leading to color spacetime groups. The formalism reveals RBS symmetries that are not readily apparent in the conventional MS formulation. Mathematica script is provided for plotting the MS and RBS geometries discussed in the work.

Highlights

  • Periodic space crystals are well established and widely used in physical sciences

  • While time crystals are of great current interest (Shapere & Wilczek, 2012; Wilczek, 2012), this work extends the concept to relativistic spacetime crystals

  • By considering blended inertial frames between two inertial observers and renormalizing the coordinates of an event observed by them by [which is a function given in equation (8) of the relative velocity between the ground and the train frames, v, and between the ground and the event frames, u], one can generate the renormalized blended spacetime (RBS) coordinates and

Read more

Summary

Mapping of events from the Minkowski to the RBS coordinates

We formally explore the transformation and the type of mapping between the MS and the RBS coordinates. How do they transform into the blended coordinates? The events with finite coordinates on the two MS light lines in Fig. 2 map to the RBS origin Þð; Æ1Þ and Àð1; Æ1Þ, map to finite, well defined coordinates in the RBS Any arbitrary event ðx"; c"t0Þ 1⁄4 1⁄21; Æ vð Ç v=cފ on the light lines in the RBS frame

Summary of important results thus far leading to the RBS coordinates
Lorentz and Poincaregroups in the RBS coordinates
10. Periodic RBS crystals
11. Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call