Abstract

The availability of intense, ultrashort coherent radiation sources in the infrared region of the spectrum is enabling the generation of attosecond X-ray pulses via high harmonic generation, pump-probe experiments in the "molecular fingerprint" region and opening up the area of relativistic-infrared nonlinear optics of plasmas. These applications would benefit from multi-millijoule single-cycle pulses in the mid to long wavelength infrared (LW-IR) region. Here we present a new scheme capable of producing tunable relativistically intense, single-cycle infrared pulses from 5-14$\mu$m with a 1.7% conversion efficiency based on a photon frequency downshifting scheme that uses a tailored plasma density structure. The carrier-envelope phase (CEP) of the LW-IR pulse is locked to that of the drive laser to within a few percent. Such a versatile tunable IR source may meet the demands of many cutting-edge applications in strong-field physics and greatly promote their development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.