Abstract
This paper presents an analysis of the relativistic self-focusing of a rippled Gaussian laser beam in a plasma. Considering the nonlinearity as arising owing to relativistic variation of mass, and following the WKB and paraxial-ray approximations, the phenomenon of self-focusing of rippled laser beams is studied for arbitrary magnitude of nonlinearity. Pandey et al. [Phys. Fluids82, 1221 (1990)] have shown that a small ripple on the axis of the main beam grows very rapidly with distance of propagation as compared with the self-focusing of the main beam. Based on this analogy, we have analysed relativistic self-focusing of rippled beams in plasmas. The relativistic intensities with saturation effects of nonlinearity allow the nonlinear refractive index in the paraxial regime to have a slower radial dependence, and thus the ripple extracts relatively less energy from its neighbourhood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.